3.5.85 \(\int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx\) [485]

3.5.85.1 Optimal result
3.5.85.2 Mathematica [C] (warning: unable to verify)
3.5.85.3 Rubi [A] (verified)
3.5.85.4 Maple [A] (verified)
3.5.85.5 Fricas [C] (verification not implemented)
3.5.85.6 Sympy [F]
3.5.85.7 Maxima [F]
3.5.85.8 Giac [F]
3.5.85.9 Mupad [B] (verification not implemented)

3.5.85.1 Optimal result

Integrand size = 25, antiderivative size = 136 \[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {6 E\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right )|\frac {2 d}{c+d}\right ) \sqrt {c+d \sin (e+f x)}}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {6 (c-d) \operatorname {EllipticF}\left (\frac {1}{2} \left (e-\frac {\pi }{2}+f x\right ),\frac {2 d}{c+d}\right ) \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}{d f \sqrt {c+d \sin (e+f x)}} \]

output
-2*a*(sin(1/2*e+1/4*Pi+1/2*f*x)^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*Ellipti 
cE(cos(1/2*e+1/4*Pi+1/2*f*x),2^(1/2)*(d/(c+d))^(1/2))*(c+d*sin(f*x+e))^(1/ 
2)/d/f/((c+d*sin(f*x+e))/(c+d))^(1/2)+2*a*(c-d)*(sin(1/2*e+1/4*Pi+1/2*f*x) 
^2)^(1/2)/sin(1/2*e+1/4*Pi+1/2*f*x)*EllipticF(cos(1/2*e+1/4*Pi+1/2*f*x),2^ 
(1/2)*(d/(c+d))^(1/2))*((c+d*sin(f*x+e))/(c+d))^(1/2)/d/f/(c+d*sin(f*x+e)) 
^(1/2)
 
3.5.85.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 6.50 (sec) , antiderivative size = 880, normalized size of antiderivative = 6.47 \[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=3 \left (\frac {\sec (e) (1+\sin (e+f x)) \left (-\frac {\operatorname {AppellF1}\left (-\frac {1}{2},-\frac {1}{2},-\frac {1}{2},\frac {1}{2},-\frac {\csc (e) \left (c+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)} \sin (e)\right )}{d \sqrt {1+\cot ^2(e)} \left (1-\frac {c \csc (e)}{d \sqrt {1+\cot ^2(e)}}\right )},-\frac {\csc (e) \left (c+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)} \sin (e)\right )}{d \sqrt {1+\cot ^2(e)} \left (-1-\frac {c \csc (e)}{d \sqrt {1+\cot ^2(e)}}\right )}\right ) \cot (e) \sin (f x-\arctan (\cot (e)))}{\sqrt {1+\cot ^2(e)} \sqrt {\frac {d \sqrt {1+\cot ^2(e)}+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)}}{d \sqrt {1+\cot ^2(e)}-c \csc (e)}} \sqrt {\frac {d \sqrt {1+\cot ^2(e)}-d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)}}{d \sqrt {1+\cot ^2(e)}+c \csc (e)}} \sqrt {c+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)} \sin (e)}}-\frac {\frac {2 d \sin (e) \left (c+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)} \sin (e)\right )}{d^2 \cos ^2(e)+d^2 \sin ^2(e)}-\frac {\cot (e) \sin (f x-\arctan (\cot (e)))}{\sqrt {1+\cot ^2(e)}}}{\sqrt {c+d \cos (f x-\arctan (\cot (e))) \sqrt {1+\cot ^2(e)} \sin (e)}}\right )}{f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2}+\frac {2 (1+\sin (e+f x)) \sqrt {c+d \sin (e+f x)} \tan (e)}{d f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2}+\frac {2 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{2},\frac {1}{2},\frac {3}{2},-\frac {\sec (e) \left (c+d \cos (e) \sin (f x+\arctan (\tan (e))) \sqrt {1+\tan ^2(e)}\right )}{d \sqrt {1+\tan ^2(e)} \left (1-\frac {c \sec (e)}{d \sqrt {1+\tan ^2(e)}}\right )},-\frac {\sec (e) \left (c+d \cos (e) \sin (f x+\arctan (\tan (e))) \sqrt {1+\tan ^2(e)}\right )}{d \sqrt {1+\tan ^2(e)} \left (-1-\frac {c \sec (e)}{d \sqrt {1+\tan ^2(e)}}\right )}\right ) \sec (e) \sec (f x+\arctan (\tan (e))) (1+\sin (e+f x)) \sqrt {\frac {d \sqrt {1+\tan ^2(e)}-d \sin (f x+\arctan (\tan (e))) \sqrt {1+\tan ^2(e)}}{c \sec (e)+d \sqrt {1+\tan ^2(e)}}} \sqrt {\frac {d \sqrt {1+\tan ^2(e)}+d \sin (f x+\arctan (\tan (e))) \sqrt {1+\tan ^2(e)}}{-c \sec (e)+d \sqrt {1+\tan ^2(e)}}} \sqrt {c+d \cos (e) \sin (f x+\arctan (\tan (e))) \sqrt {1+\tan ^2(e)}}}{d f \left (\cos \left (\frac {e}{2}+\frac {f x}{2}\right )+\sin \left (\frac {e}{2}+\frac {f x}{2}\right )\right )^2 \sqrt {1+\tan ^2(e)}}\right ) \]

input
Integrate[(3 + 3*Sin[e + f*x])/Sqrt[c + d*Sin[e + f*x]],x]
 
output
3*((Sec[e]*(1 + Sin[e + f*x])*(-((AppellF1[-1/2, -1/2, -1/2, 1/2, -((Csc[e 
]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + 
 Cot[e]^2]*(1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2])))), -((Csc[e]*(c + d*Cos 
[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2]*Sin[e]))/(d*Sqrt[1 + Cot[e]^2]*( 
-1 - (c*Csc[e])/(d*Sqrt[1 + Cot[e]^2]))))]*Cot[e]*Sin[f*x - ArcTan[Cot[e]] 
])/(Sqrt[1 + Cot[e]^2]*Sqrt[(d*Sqrt[1 + Cot[e]^2] + d*Cos[f*x - ArcTan[Cot 
[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 + Cot[e]^2] - c*Csc[e])]*Sqrt[(d*Sqrt[ 
1 + Cot[e]^2] - d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot[e]^2])/(d*Sqrt[1 
+ Cot[e]^2] + c*Csc[e])]*Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + Cot 
[e]^2]*Sin[e]])) - ((2*d*Sin[e]*(c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[1 + 
Cot[e]^2]*Sin[e]))/(d^2*Cos[e]^2 + d^2*Sin[e]^2) - (Cot[e]*Sin[f*x - ArcTa 
n[Cot[e]]])/Sqrt[1 + Cot[e]^2])/Sqrt[c + d*Cos[f*x - ArcTan[Cot[e]]]*Sqrt[ 
1 + Cot[e]^2]*Sin[e]]))/(f*(Cos[e/2 + (f*x)/2] + Sin[e/2 + (f*x)/2])^2) + 
(2*(1 + Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]*Tan[e])/(d*f*(Cos[e/2 + (f* 
x)/2] + Sin[e/2 + (f*x)/2])^2) + (2*AppellF1[1/2, 1/2, 1/2, 3/2, -((Sec[e] 
*(c + d*Cos[e]*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2]))/(d*Sqrt[1 + 
Tan[e]^2]*(1 - (c*Sec[e])/(d*Sqrt[1 + Tan[e]^2])))), -((Sec[e]*(c + d*Cos[ 
e]*Sin[f*x + ArcTan[Tan[e]]]*Sqrt[1 + Tan[e]^2]))/(d*Sqrt[1 + Tan[e]^2]*(- 
1 - (c*Sec[e])/(d*Sqrt[1 + Tan[e]^2]))))]*Sec[e]*Sec[f*x + ArcTan[Tan[e]]] 
*(1 + Sin[e + f*x])*Sqrt[(d*Sqrt[1 + Tan[e]^2] - d*Sin[f*x + ArcTan[Tan...
 
3.5.85.3 Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3231, 3042, 3134, 3042, 3132, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a \sin (e+f x)+a}{\sqrt {c+d \sin (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a \sin (e+f x)+a}{\sqrt {c+d \sin (e+f x)}}dx\)

\(\Big \downarrow \) 3231

\(\displaystyle \frac {a \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {a (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \int \sqrt {c+d \sin (e+f x)}dx}{d}-\frac {a (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {a \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a \sqrt {c+d \sin (e+f x)} \int \sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}dx}{d \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a (c-d) \int \frac {1}{\sqrt {c+d \sin (e+f x)}}dx}{d}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \int \frac {1}{\sqrt {\frac {c}{c+d}+\frac {d \sin (e+f x)}{c+d}}}dx}{d \sqrt {c+d \sin (e+f x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {2 a \sqrt {c+d \sin (e+f x)} E\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right )|\frac {2 d}{c+d}\right )}{d f \sqrt {\frac {c+d \sin (e+f x)}{c+d}}}-\frac {2 a (c-d) \sqrt {\frac {c+d \sin (e+f x)}{c+d}} \operatorname {EllipticF}\left (\frac {1}{2} \left (e+f x-\frac {\pi }{2}\right ),\frac {2 d}{c+d}\right )}{d f \sqrt {c+d \sin (e+f x)}}\)

input
Int[(a + a*Sin[e + f*x])/Sqrt[c + d*Sin[e + f*x]],x]
 
output
(2*a*EllipticE[(e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[c + d*Sin[e + f*x]] 
)/(d*f*Sqrt[(c + d*Sin[e + f*x])/(c + d)]) - (2*a*(c - d)*EllipticF[(e - P 
i/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/(d*f*Sqrt 
[c + d*Sin[e + f*x]])
 

3.5.85.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3231
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)]], x_Symbol] :> Simp[(b*c - a*d)/b   Int[1/Sqrt[a + b*Sin[e + f*x 
]], x], x] + Simp[d/b   Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a, b 
, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 
3.5.85.4 Maple [A] (verified)

Time = 5.71 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.51

method result size
default \(\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (\sin \left (f x +e \right )+1\right )}{c -d}}\, \left (2 F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c -E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(205\)
parts \(\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (\sin \left (f x +e \right )+1\right )}{c -d}}\, F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right )}{d \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}-\frac {2 a \left (c -d \right ) \sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}\, \sqrt {-\frac {\left (\sin \left (f x +e \right )-1\right ) d}{c +d}}\, \sqrt {-\frac {d \left (\sin \left (f x +e \right )+1\right )}{c -d}}\, \left (E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) c +E\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d -F\left (\sqrt {\frac {c +d \sin \left (f x +e \right )}{c -d}}, \sqrt {\frac {c -d}{c +d}}\right ) d \right )}{d^{2} \cos \left (f x +e \right ) \sqrt {c +d \sin \left (f x +e \right )}\, f}\) \(330\)
risch \(\text {Expression too large to display}\) \(1428\)

input
int((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)
 
output
2*a*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(sin(f*x+e)-1)*d/(c+d))^(1/2)*( 
-d*(sin(f*x+e)+1)/(c-d))^(1/2)*(2*EllipticF(((c+d*sin(f*x+e))/(c-d))^(1/2) 
,((c-d)/(c+d))^(1/2))*d-EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c 
+d))^(1/2))*c-EllipticE(((c+d*sin(f*x+e))/(c-d))^(1/2),((c-d)/(c+d))^(1/2) 
)*d)/d^2/cos(f*x+e)/(c+d*sin(f*x+e))^(1/2)/f
 
3.5.85.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 383, normalized size of antiderivative = 2.82 \[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {-3 i \, \sqrt {2} a \sqrt {i \, d} d {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right )\right ) + 3 i \, \sqrt {2} a \sqrt {-i \, d} d {\rm weierstrassZeta}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )\right ) - \sqrt {2} {\left (2 \, a c - 3 \, a d\right )} \sqrt {i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (8 i \, c^{3} - 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) - 3 i \, d \sin \left (f x + e\right ) - 2 i \, c}{3 \, d}\right ) - \sqrt {2} {\left (2 \, a c - 3 \, a d\right )} \sqrt {-i \, d} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (4 \, c^{2} - 3 \, d^{2}\right )}}{3 \, d^{2}}, -\frac {8 \, {\left (-8 i \, c^{3} + 9 i \, c d^{2}\right )}}{27 \, d^{3}}, \frac {3 \, d \cos \left (f x + e\right ) + 3 i \, d \sin \left (f x + e\right ) + 2 i \, c}{3 \, d}\right )}{3 \, d^{2} f} \]

input
integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")
 
output
1/3*(-3*I*sqrt(2)*a*sqrt(I*d)*d*weierstrassZeta(-4/3*(4*c^2 - 3*d^2)/d^2, 
-8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/ 
d^2, -8/27*(8*I*c^3 - 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f* 
x + e) - 2*I*c)/d)) + 3*I*sqrt(2)*a*sqrt(-I*d)*d*weierstrassZeta(-4/3*(4*c 
^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, weierstrassPInverse(-4/ 
3*(4*c^2 - 3*d^2)/d^2, -8/27*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x 
+ e) + 3*I*d*sin(f*x + e) + 2*I*c)/d)) - sqrt(2)*(2*a*c - 3*a*d)*sqrt(I*d) 
*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/27*(8*I*c^3 - 9*I*c*d^2) 
/d^3, 1/3*(3*d*cos(f*x + e) - 3*I*d*sin(f*x + e) - 2*I*c)/d) - sqrt(2)*(2* 
a*c - 3*a*d)*sqrt(-I*d)*weierstrassPInverse(-4/3*(4*c^2 - 3*d^2)/d^2, -8/2 
7*(-8*I*c^3 + 9*I*c*d^2)/d^3, 1/3*(3*d*cos(f*x + e) + 3*I*d*sin(f*x + e) + 
 2*I*c)/d))/(d^2*f)
 
3.5.85.6 Sympy [F]

\[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=a \left (\int \frac {\sin {\left (e + f x \right )}}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx + \int \frac {1}{\sqrt {c + d \sin {\left (e + f x \right )}}}\, dx\right ) \]

input
integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)
 
output
a*(Integral(sin(e + f*x)/sqrt(c + d*sin(e + f*x)), x) + Integral(1/sqrt(c 
+ d*sin(e + f*x)), x))
 
3.5.85.7 Maxima [F]

\[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {a \sin \left (f x + e\right ) + a}{\sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \]

input
integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")
 
output
integrate((a*sin(f*x + e) + a)/sqrt(d*sin(f*x + e) + c), x)
 
3.5.85.8 Giac [F]

\[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=\int { \frac {a \sin \left (f x + e\right ) + a}{\sqrt {d \sin \left (f x + e\right ) + c}} \,d x } \]

input
integrate((a+a*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")
 
output
integrate((a*sin(f*x + e) + a)/sqrt(d*sin(f*x + e) + c), x)
 
3.5.85.9 Mupad [B] (verification not implemented)

Time = 7.42 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.29 \[ \int \frac {3+3 \sin (e+f x)}{\sqrt {c+d \sin (e+f x)}} \, dx=\frac {a\,\left (2\,c\,\mathrm {F}\left (\mathrm {asin}\left (\frac {\sqrt {2}\,\sqrt {1-\sin \left (e+f\,x\right )}}{2}\right )\middle |\frac {2\,d}{c+d}\right )-2\,\left (c+d\right )\,\mathrm {E}\left (\mathrm {asin}\left (\frac {\sqrt {2}\,\sqrt {1-\sin \left (e+f\,x\right )}}{2}\right )\middle |\frac {2\,d}{c+d}\right )\right )\,\sqrt {{\cos \left (e+f\,x\right )}^2}\,\sqrt {\frac {c+d\,\sin \left (e+f\,x\right )}{c+d}}}{d\,f\,\cos \left (e+f\,x\right )\,\sqrt {c+d\,\sin \left (e+f\,x\right )}}-\frac {2\,a\,\mathrm {F}\left (\frac {\pi }{4}-\frac {e}{2}-\frac {f\,x}{2}\middle |\frac {2\,d}{c+d}\right )\,\sqrt {\frac {c+d\,\sin \left (e+f\,x\right )}{c+d}}}{f\,\sqrt {c+d\,\sin \left (e+f\,x\right )}} \]

input
int((a + a*sin(e + f*x))/(c + d*sin(e + f*x))^(1/2),x)
 
output
(a*(2*c*ellipticF(asin((2^(1/2)*(1 - sin(e + f*x))^(1/2))/2), (2*d)/(c + d 
)) - 2*(c + d)*ellipticE(asin((2^(1/2)*(1 - sin(e + f*x))^(1/2))/2), (2*d) 
/(c + d)))*(cos(e + f*x)^2)^(1/2)*((c + d*sin(e + f*x))/(c + d))^(1/2))/(d 
*f*cos(e + f*x)*(c + d*sin(e + f*x))^(1/2)) - (2*a*ellipticF(pi/4 - e/2 - 
(f*x)/2, (2*d)/(c + d))*((c + d*sin(e + f*x))/(c + d))^(1/2))/(f*(c + d*si 
n(e + f*x))^(1/2))